Characterization of the three-dimensional kinematic behavior of axons in central nervous system white matter.

نویسندگان

  • Sagar Singh
  • Assimina A Pelegri
  • David I Shreiber
چکیده

Traumatic injury to axons in white matter of the brain and spinal cord occurs primarily via tensile stretch. During injury, the stress and strain experienced at the tissue level is transferred to the microscopic axons. How this transfer occurs, and the primary constituents dictating this transfer must be better understood to develop more accurate multi-scale models of injury. Previous studies have characterized axon tortuosity and kinematic behavior in 2-dimensions (2-D), where axons have been modeled to exhibit non-affine (discrete), affine (composite-like), or switching behavior. In this study, we characterize axon tortuosity and model axon kinematic behavior in 3-dimensions (3-D). Embryonic chick spinal cords at different development stages were excised and stretched. Cords were then fixed, transversely sectioned, stained, and imaged. 3-D axon tortuosity was measured from confocal images using a custom-built MATLAB script. 2-D kinematic models previously described in Bain et al. (J Biomech Eng 125(6):798, 2003) were extended, re-derived, and validated for the 3-D case. Results showed that 3-D tortuosity decreased with stretch, exhibiting similar trends with changes in development as observed in the 2-D studies. Kinematic parameters also displayed similar general trends. Axons demonstrated more affine behavior with increasing stretch and development. In comparison with 2-D results, a smaller percentage of the populations of 3-D axons were predicted to follow pure non-affine behavior. The data and kinematic models presented herein can be incorporated into multi-scale CNS injury models, which can advance the accuracy of the models and improve the potential to identify axonal injury thresholds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)

The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...

متن کامل

Neurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)

The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...

متن کامل

P 45: De- and Remyelination Affect Cognitive and Locomotor Abilities in Mice

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammatory and neurodegenerative processes. One of its pathophysiological hallmarks is demyelination, a consequence of oligodendroglial cell death leading supply shortfall and missing electrical insulation to axons. Demyelination induced consequences on neuronal network activity and subsequen...

متن کامل

IEEE Transactions on Biomedical Engineering Special Issue: Multi-Scale Modeling and Analysis for Computational Biology and Medicine

Mechanical damage to axons is a proximal cause of deficits following traumatic brain injury and spinal cord injury. Axons are injured predominantly by tensile strain, and identifying the strain experienced by axons is a critical step towards injury prevention. White matter demonstrates complex non-linear mechanical behavior at the continuum level that evolves from even more complex, dynamic, co...

متن کامل

The effect of increasing running speed on three-dimensional changes of lower limb joint angles in open motor chain and swing phase

Objective Running is known as one of the most popular sports for which there is no time and space limit. Recently, due to lifestyle changes, the use of treadmills for walking and running has increased. However, the biomechanical differences in coordination between running on a treadmill at different speeds have not been sufficiently addressed. The aim of this study was to investigate the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2015